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INTRODUCTION

This is the ninth Quarterly Progress Report for NAS8-11334,
RESEARCH STUDY FOR DETERMINATION OF LIQUID SURFACE PROFILE IN A
CRYOGENIC TANK DURING GAS INJECTION. The period covered is June

18, 1966 to September 17, 1966.

ANALYSIS OF PROGRESS

A larger bubble tank was constructed and tested this quarter.
As the total gas flow rate was increased the surface waves in the
previous eighteen-inch square tank splashed against the walls and
obscured the view of the surface disturbance. A new tank five-feet
square was constructed. Data in a flow rate region which overlaps
that of previous data were obtained. The new data fit very closely
to the previous correlations. Thus, it appears that the new tank
can be used to extend the existing correlation.

The entrainment phase of this research during the past quarter
was directed to a study of the influence of the entrapped-liquid
viscosity on entraimment of the liquid by air streams. The same test
sections utilized in the water tests are being used for the variable
viscosity tests. From the limited data collected to date certain
trends are indicated, however, additional tests are required before
any definite conclusions may be drawn regarding the role of liquid
viscosity in entrainment. Plots of entrainment versus time for
various average air mass flow rates and liquid viscosities are pre-

sented and discussed in this report. These plots are explained in



terms of the liquid flow characteristics in various parts of the

test section, and comparisons of these characteristics are made

with those of water which are thoroughly described and discussed

in Annual Report #2. The initial results indicate that at high

air mass flow rates (greater than 6.66 lbm/min) for the viscosity
range of lcp-4cp changes in viscosity have very little effect upon
entralnment. However, at low to medium (4.11 1bm/min to 6.66 lbm/min)
air flow rates increases in viscosity cause significant reductions in

entrainment.

PROGRESS

Surface Profile

The Second Annual Report, dated June 18, 1966, gives the
height and shape of the surface profiles caused by rising swarms
of gas bubbles as determined experimentally. The data cover an
inlet gas flow rate of from 2 to 28 standard cubic feet per hour.
Correlations of these data were also presented, which could be used
to compute the shape of the disturbance for any inlet gas flow rate
in that range. At the higher gas flow rates we began to experience
difficulty in obtaining data in the 18-inch square tank then being
used. Surface waves caused by the disturbance would splash against
the sides of the tank obscuring the surface profiles. Consequently,
it was determined that a larger tank would have to be built in order
to permit extension of the inlet gas flow rate to higher rates.

The primary effort this quarter was devoted to designing,

constructing and testing a larger bubble tank. The new tank is

-2 -



five-feet square and approximately three feet in depth with the

gas inlet device located in the center. We have again used a
square tank for photographic considerations, and plexiglas was

used as the material of construction. The first consideration was
whether the data obtained using the new tank would agree with the
previous data obtained with the smaller tank and would fit the
previous correlations. Therefore, the first four surface profiles
were obtained at gas flow rates between twelve and twenty-four
standard cubic feet per hour, which fall within the range pre-
viously studied. Figures 1 through 6 show the four new data points
along with the earlier data as presented in figures 46 through 51
of the Second Annual Report. It may be seen that the data obtained
through use of the larger tank does fit well with the earlier data.
The addition of this data, presented in Table 1, has not changed the
generalized non-dimensional surface disturbance shape, which was
presented as Figure 44 in the Second Annual Report, and is repeated
here as Figure 7. Figures 8 through 11 give comparisons of the new

data with the correlations given in Figures 7, 1, and 6.

Entrainment

The primary effort during this report period was devoted to
initiating a study of the influence of the viscosity of an entrapped
liquid on the removal of this liquid by an air stream.

Viscosity variation was accomplished by using various mixtures
of glycerine and water. Since the viscosity of glycerine is temperature
dependent and since the air stream temperature often varies from 10°

to 15°F in the course of a day's operation, which in turn causes the

-3 -



Table 1. Experimental Surface Profiles Obtained Through Use of the Five
Foot Square Bubble Tank., Distilled Water Nitrogen System.

Inlet Gas Flow Average Surface Profile Data, feet Number of Surface
Rate~Standard Disturbances Analyz-
Cubic Feet Per ed to Yield Average
Hour 7 g 7 7 7 Surface Profile Data
m r=0 r=0.25 | r=0.50 r=0,75

12,36 0.0684 0.0583 0.0526 0.0436 0.0291 60

19.55 0.0758 0.0592 0.0561 0.0437 0.0263 60

21.55 0.1012 0.0825 0.0753 0.0625 0.0378 59

23.70 0.0994 0.0828 0.0722 0.0594 0.0374 60
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glycerine-water mixture temperature to vary, the viscosity of the
mixture was measured several times during the course of a run and
averaged. In every instance where a viscosity value is quoted, e.g.,
on curves of entrainment versus time, it represents an average value.
Since only a limited range of viscosity values has been inves-
tigated to date, the results to be presented are not conclusive,
however, certain trends are indicated. It should be pointed out
that the amount of time required to complete a run at a given average
air mass flow rate has now doubled that required for the water test.
The geometrical configurations previously studied using water
as the confined liquid are being used for this investigation so that
geometrical influences on the entrainment will be the same for both
series of tests. The geometrical configuration presently being tested
is shown in figure 12. Also, the same upstream-air static pressures
used in the water tests are being used in the variable viscosity test,
however, for a given upstream air pressure the average mass flow rates
are different for the two series of tests; the mass flow rate for the
variable viscosity test being slightly higher. This results from the
changes made to the entrained-liquid carry-out system to reclaim the
glycerine-water mixture; the pressure loss now being actually less than

in the water system.

Flow Characteristics

For glycerine-water mixtures with viscosities up to approxi-
mately 50% greater than that of water at standard temperature (viscosity

approximately one centipoise), no appreciable changes to the liquid flow

- 16 -
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reducer elbow

4" Pyrex pipe, length variable

Figure 12. Entrainment Test Section



characteristics previously reported for water in the horizontal part
of the test section shown in figure 12 could be observed. The differ-
ent zones of flow defined in Annual Report #2 qualitatively describe
the flow phenomena observed in the present series of tests. However,
for a glycerine-water mixture with a viscosity of approximately four
centipoise the wavelength and amplitude of the waves in zone 3 were
considerably less than in the water tests for approximately the same
average mass flow rate of air. Other characteristics of the flow were
identical, with an apparent increase in mist formation at the downstream
end of zone 3 where the waves impinge on the 90° elbow joining the
horizontal pipe to the vertical pipe. (This is likely the result of

a decrease in the surface tension.) The major means by which the
glycerine-water mixture is transported from the test section is by
this wave impingement which splashes liquid up into the vertical pipe
forming both a fine mist and a thin film which is carried by the air
up the vertical pipe. Visual observation of the flow in the vertical
pipe indicates that the wetability of the glycerine-water mixture is
greater than that of the water; the film covers a larger percentage

of the surface of the vertical pipe than for water at small average
mass flow rates of air.

The flow in the vertical pipe for the glycerine-water mixtures
investigated to date, viscosities of from lcp to 4cpy is similar to
that described and shown in figure 11 of Annual Report #2. For a
mixture with a viscosity of approximately 4 cp there was an apparent
"increase in the amount of mist being carried up the vertical pipe.

The mist was not formed by liquid in the film falling back into the

- 18 -



horizontal pipe, as in the water tests, but by the impingement of
waves on the downstream 90° elbow. Some frothing was observed

periodically which resulted in an increase in mist formation.

Entrainment Rates

Figures 13 and 14 are plots of entrainment E versus time t for
entrapped liquid quantities of 1/4 and 1/2 of the total volume of the
horizontal pipe of the test section; the curves are for a given average
mass flow rate and liquid viscosity. (The data are presented in
Appendix I.) It is obvious upon a quick inspection of these plots
that nearly all of the curves are for a different value of the viscosity.
This results from the sharp dependence of the viscosity of glycerine
upon temperature, and the fact that the temperature of the glycerine-
water mixture varies during the course of a day's operation. The
above points were discussed previously. The entrainment curves for
water are not shown in figures 13 and 14 since the average air mass
flow rates differ by as much as 4 lbm/min from those for the glycerine-
water test for the same upstream air static pressure. The reason for
this flow rate difference has been explained.

For the 1/2 filled case, figure 13, the data is limited to the
viscosity range 1.19 cp to 1.364 cp with only one value of the viscosity
for each of the average air mass flow rates of 12.55 lbm/min and 9.96
lbm/min. For air mass flow rates of 6.66 lbm/min and 4.11 lbm/min two
viscosity curves are shown in figure 13 for each flow rate (the visco-
sities differ by approximately 9%). In each case an increase in the

viscosity caused a reduction in the entrainment at all times. At the
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lower mass flow rate the reduction in entrainment was the greatest; as
much as 57% at t=10 min., however, as t increases the total reduction is
approximately 23%. It appears that small changes to the viscosity will
have negligible effect upon entrainment at the higher (greater than 6.66
lbm/min) flow rates. Additional data in this area is required. The
reductions in entrainment found as the viscosity of the liquid was in-
creased may be attributed primarily to the increased frictional loss of
the film in the vertical pipe; of secondary importance is the increase
in mist formation and removal of liquid as fine droplets entrained in
the air, the sum of the two "entrainment-reducing" effects, increased
frictional loss and specific gravity, outweighs this "entrainment-
increasing" effect.

For the 1/4~filled case, figure 14, several viscosity curves are
shown for each average air mass flow rate. For the higher air flow rates,
17 1bm/min to 22 lbm/min, increases in viscosity of around 360% did not
materially affect the entrainment, though there was some reduction. At
these higher flow rates a majority of the liquid is removed initially
in large slugs. Since the specific gravity of the glycerine-water mixtures
tested did not exceed 1.13 and since viscosity does not materially effect
slug flow (the gravity force being predominate in the particular geometry
of this research) there should be little effect upon the entrainment at
these flow rates as the viscosity is increased to approximately 4 cp with
a corresponding specific gravity of 1.13. For lower flow rates, 10.8
to 7.5 lbm/min., the entrainment curves for a viscosity of approximately

4 cp are considerably below those for a viscosity of 1.39 cp. Since the
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removal of the liquid from the test section at these flow rates is

predominately by the flowing film, viscosity changes have more effect

on the entrainment.

CURRENT PROBLEMS

Surface Profile

Now that the larger tank is in use, the previous problems in
obtaining unobscured motion picture recordings of the surface distur-
bances have been eliminated and there are no problems delaying the

work at this time.

Entrainment

There are no problems delaying the work on the entrainment

phase of the research at this time.

PLANS FOR NEXT QUARTER

Surface Profile

The correlations given in Figures 1 through 7 will be extended
into the higher inlet gas flow rate regime through analysis of motion

plcture recordings made using the new large bubble tank.

Entrainment

The variable viscosity tests will be continued, to be terminated

with tests for pure glycerine.
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APPENDIX I

ENTRAINMENT DATA



Table II.

Entrainment Versus Time for Test Section Shown in

Figure 12 (1/4 - Filled) for Various Air Flow Rates and Liquid Viscosities

Time Upstream Average Mass Average Liquid Entrainment
Min. Air Pressure Flow Rate of Viscosity

Inches Hg Dry Air Centipoise

1bm/min

0-5 3.2 7.575 1.39 0.1485
0-10 7.555 0.193
0-20~ 7.530 0.222
0-30 7.530 0.232
0-10 3.2 7.250 3.67 0.0125
0-3 6.4 10.890 1.39 0.582
0-5 10.905 0.619
0-10 10.815 0.670
0-15 10.770 0.70
0-20 10.940 0.729
0-25 10.840 0.740
0-3 6.4 11.04 2.79 0.406
0-5 11.00 0.478
0-10 11.035 0.533
0-15 11.035 0.557
0-20 10.97 0.588
0-3 12.8 16.275 1.44 0.916
0-5 16.320 0.946
0-10 16.205 0.947
0-2 12.8 16.203 4,12 0.904
0-3 16.17 0.91
0-5 16.23 0.925
0-10 16.22 0.931
0-2 19.2 21.235 1.387 0.986
0-3 21.380 0.994
0-5 21.260 0.993
0-2 19.2 21.28 3.65 0.988
0-3 21.32 0.996
0-5 21.265 0.996
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Tble IIT. Entrainment Versus Time for Test Section Shown in
Figure 12 (1/2-Filled) for Various Air Flow Rates and Liquid Viscosities

Time Upstream Average Mass Average Liquid Entrainment
Min Air Pressure Flow Rate of Viscosity
Inches Hg Dry Air Centiposie
1bm/min

0-5 1.4 4,185 1.249 0.126
0-10 4.055 0.185
0-20 4.020 0.236
0-30 4.040 0.252
0-5 1.4 4,235 1.364 0.049
0-10 4.195 0.082
0-20 4.145 0.132
0-30 4,160 0.168
0-40 4,040 0.195
0-5 2.8 6.600 1.145 0.433
0-10 6.515 0.457
0-20 6.615 0.484
0-30 6.705 0.496
0-5 2.8 6.700 1.252 0.397
0-10 6.765 0.428
0-20 6.715 0.457
0-30 6.635 0.480
0-3 5.6 9.910 1.210 0.734
0-5 9.985 0.745
0-10 10.045 0.778
0-20 9.920 0.792
0-3 5.6 10.020 1.269 0.734
0-5 9.990 0.737
0-10 10.055 0.755
0-2 8.4 12.555 1.190 0.871
0-5 12.485 0.895
0-10 12,605 0.907




